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Electro- and magnetoencephalography (EEG/MEG) are the means to investigate the dynamics of neuronal
activity non-invasively in the human brain. However, both EEG and MEG are also sensitive to non-neural
sources, which can severely complicate the interpretation. The saccadic spike potential (SP) at saccade
onset has been identified as a particularly problematic artifact in EEG because it closely resembles synchronous
neuronal gammaband activity.While the SP and its confounding effects onEEGhavebeen thoroughly characterized,
the corresponding artifact in MEG, the saccadic spike field (SF), has not been investigated. Here we provide a
detailed characterization of the SF. We simultaneously recorded MEG, EEG, gaze position and electrooculogram
(EOG). We compared the SF in MEG for different saccade sizes and directions and contrasted it with the well-
known SP in EEG. Our results reveal a saccade amplitude and direction dependent, lateralized saccadic
spike artifact, which was most prominent in the gamma frequency range. The SF was strongest at frontal
and temporal sensors but unlike the SP in EEG did not contaminate parietal sensors. Furthermore, we observed
that the source configurations of the SF were comparable for regular and miniature saccades. Using distributed
source analysis we identified the sources of the SF in the extraocular muscles. In summary, our results show that
the SF in MEG closely resembles neuronal activity in frontal and temporal sensors. Our detailed characterization
of the SF constitutes a solid basis for assessing possible saccadic spike related contamination in MEG experiments.
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Introduction

Electro- and magnetoencephalography (EEG/MEG) are the means
for investigating neuronal dynamics non-invasively in the human brain.
However, these measures are also sensitive to other physiological
sources like heartbeat, muscle activity or the rotation of the eyeball
during eye movements. This compound nature of EEG/MEG signals can
substantially complicate the interpretation of recorded data. A detailed
knowledge of the non-neural sources affecting these measures is thus
critical to allow an unequivocal description of neuronal processes.

The saccadic spike is an important example of such an artifactual
signal. It is observed at the onset of even tiny saccadic eye move-
ments. The saccadic spike artifact is characterized by strong electric
transients that are believed to reflect the contraction of the extraocular
muscles in the orbit (Boylan and Doig, 1989a; Kovach et al., 2011;
Moster and Goldberg, 1990; Riemslag et al., 1988; Thickbroom and
Mastaglia, 1985; Yuval-Greenberg et al., 2008), although some studies
provide evidence for cortical contributions (Balaban and Weinstein,
1985; Brooks-Eidelberg and Adler, 1992; Csibra et al., 1997). In
order to account for the effect of the saccadic spike artifact on neuro-
physiological measurements, one needs to first understand its statistics
of occurrence and second characterize its temporal, spectral, and spatial
properties.

Under free viewing conditions humans perform approximately
three saccadic eye movements per second. Even when attempting
to fixate humans execute spontaneous miniature saccades (i.e. micro-
saccades and saccadic intrusions) with an average rate of one to two
saccades per second (Gowen et al., 2007;Martinez-Conde et al., 2009).
Importantly, saccade rate, amplitude, and direction are modulated by
sensory stimulation and task demands (Engbert, 2006; Engbert and
Kliegl, 2003; Gowen et al., 2005, 2007; Laubrock et al., 2005, 2010;
Reingold and Stampe, 2002; Rolfs, 2009; Rolfs et al., 2008; Valsecchi
et al., 2007, 2009; Yuval-Greenberg et al., 2008) and have been linked
to perceptual processes (Laubrock et al., 2008; Troncoso et al., 2008;
van Dam and van Ee, 2006). Moreover, the rate of eye movements is
altered in clinical populations (Martinez-Conde, 2006). This makes
saccades and thus saccadic spikes omnipresent features of the visual
systemwhose occurrence is oftenmodulated alongwith experimental
contrasts.

The effect of the saccadic spike on EEG and intracranial EEG (iEEG)
has been studied in great detail. Both, regular saccades and miniature
saccades produce at their onset a biphasic transient artifact of approx-
imately 22 ms duration referred to as the saccadic spike potential
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(SP, Jerbi et al., 2009; Keren et al., 2010a; Kovach et al., 2011; Riemslag
et al., 1988; Yuval-Greenberg et al., 2008). The topography of the SP at
its first peak is characterized by a minimum at frontal electrodes and a
maximum at posterior electrodes, while the potential gradient is stee-
pest around the eyes. The amplitude values depend on the choice of
the EEG reference. For the average reference as used throughout the
paper, the SP is characterized by a distribution of negative electrical
potential at frontal electrodes and positive potential at parietal and oc-
cipital electrodes. This distribution is inverted at the second deflection
(Csibra et al., 2000; Keren et al., 2010a; Thickbroom and Mastaglia,
1985; Yuval-Greenberg et al., 2008). In iEEG, the SP is largest at medial
and ventral portions of the temporal pole (Jerbi et al., 2009; Kovach et
al., 2011). The topography of the SP is lateralized ipsilateral to saccade
direction (Keren et al., 2010a; Kovach et al., 2011; Moster et al., 1997;
Thickbroom and Mastaglia, 1985) and its amplitude depends on sac-
cade size (Armington, 1978; Boylan and Doig, 1989b; Keren et al.,
2010a; Kovach et al., 2011; Riemslag et al., 1988). The power spectrum
of the SP is characterized by a broadband peak in the gamma band
from roughly 30 to 120 Hz (Jerbi et al., 2009; Yuval-Greenberg et
al., 2008).

Due to its spectral properties and statistics of occurrence the SP
artifact resembles neuronal gamma band activity (Kovach et al.,
2011; Reva and Aftanas, 2004; Schwartzman and Kranczioch,
2011; Trujillo et al., 2005; Yuval-Greenberg et al., 2008). Particularly
problematic is the fact that microsaccades and regular saccades follow
a characteristic inhibition–enhancement sequence after visual and
auditory stimulation that is not precisely time-locked to stimulus
onset. The saccadic spike artifact occurring at every saccade onset
thereforemimics an induced (non-phase locked) gammaband response
to stimulus presentation at parietal EEG sensors. Notably, the effect size
depends on the choice of the EEG reference. Since saccade statistics
change with sensory stimulation and cognitive demands, the SP's
artifact signature is oftenmodulated alongwith experimental contrasts.
Thus, the close resemblance of the SP to neurophysiological activity in
combination with stimulation and task dependent saccade statistics
constitutes a serious problem for the interpretation of the EEG data.
However, the detailed knowledge on the SP's temporal, spectral, and
spatial properties provides a good basis to assess confounds of neuronal
signals. It is nowwidely agreed on that any EEG study needs to carefully
control for possible SP confounds (Keren et al., 2010a; Schwartzmanand
Kranczioch, 2011; Yuval-Greenberg et al., 2008).

The currents in neuronal andmuscular tissue generating the electrical
potential measured with EEG also induce a magnetic field that can be
measured with MEG. MEG complements EEG with respect to its high
sensitivity for tangential sources and, since magnetic fields are less
distorted by the head's tissue properties, provides an excellent basis
for source analysis (Hämäläinen et al., 1993). Similarly to the SP in
EEG, MEG data should be confounded by a magnetic saccadic spike
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Fig. 1. Experimental task. Subjects were asked to fixate the blue asterisk in the center of th
target location for the saccade. Targets were Gaussian patches located on the horizontal line
to the inner point on the right side. Subjects waited for 1 s until the asterisk disappeared befo
10 trials with a saccade to the inner right target.
field (SF). It has been speculated that the saccadic spike artifact is of
minor importance for MEG (Fries et al., 2008; Gruber, 2008;
Schwartzman and Kranczioch, 2011) but direct evidence is missing
(but see the poster of Keren et al., 2010b, at the HBM 2010 conference).
Here, we measure the SF in MEG during a memory-guided delayed
saccade task. We provide a detailed temporal, spatial and spectral
characterization of the SF both for guided regular as well as spontaneous
miniature saccades. We investigate the effects of horizontal saccade
directions and saccade sizes on the amplitude and topography of the
SF and compare the SF to the SP from concurrent EEG recordings.
Furthermore, we estimate the origin of the SF using distributed source
analysis.

Our findings demonstrate that the saccadic spike artifact may
seriously confound neurophysiological signals in MEG. The detailed
characterization of the phenomenon provides a solid basis for assessing
possible SF confounds in future MEG experiments. Furthermore, our
study constitutes the first step towards developing tools for separating
the saccadic spike artifact from MEG data.

Materials and methods

Participants

Thirteen healthy volunteers participated in this study (ten female,
mean age 27.5). Subjects received monetary compensation for their
participation. All participants had normal or corrected-to-normal
vision, and had no history of neurological or psychiatric illness.
The study was conducted in accordance with the Declaration of
Helsinki and informed consent was obtained from all participants
prior to recordings.

Behavioral task and stimulation

Participants performed a delayed saccade task with horizontal
saccades of two different amplitudes (Fig. 1). At the beginning of
each trial, subjects fixated for 800 ms a blue asterisk in the center of
the screen. Surrounding the asterisk, 16Gaussian patcheswere regularly
arranged on an inner and outer circle (distance from the asterisk: 5.5°
and 11° respectively). The 4 Gaussian patches on a horizontal line in
the center of the screen served as saccade targets corresponding to
four experimental conditions: leftwards long and short saccades and
rightwards long and short saccades. Following fixation, the central
asterisk underwent a 200 ms isoluminant color change to green
with a red colored marker. The position of the red marker indicated for
each trial one of the four target locations and instructed the participants
to prepare a saccade. If the red marker covered the inner part of an
asterisk's branch it indicated a small saccade, if it covered the outer
part of the asterisk's branch it indicated a large saccade. The side of
Saccade ISI
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e screen. An intermittent color change to green with a red marker informed about the
passing the center. In the depicted example, the subject was instructed to plan a saccade
re executing the saccade. Top: representative eye traces of one participant over the first
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the marked branch informed the participants of the saccade direction.
During the following delay period of 1 s participants had to maintain
fixation. Then, the asterisk disappeared. This ‘go’ signal instructed the
subjects to perform the saccade. Subjects should maintain fixation at
saccade target until it disappeared after 1.25 s. Between trials, a blank
screen was presented for 1 s. In total each subject performed 500 trials
(125 for each condition). Trials of all four experimental conditions
were randomly presented.

During the experiment, participantswere seated in theMEGchamber.
Stimuli were back-projected onto the screen at 54 cm distance with a
liquid crystal display video projector (Sanyo XP51 Beamer, 60 Hz refresh
rate) and a two-mirror system. Stimuli were presented using the
software Presentation (Neurobehavioral Systems, Albany, CA).

Analysis software

All data analyses were performed in Matlab (MathWorks, Natick,
MA) with custom software and the open source toolboxes Fieldtrip
(Oostenveld et al., 2011) and SPM2 (http://www.fil.ion.ucl.ac.uk/
spm/).

Data acquisition and preprocessing

MEG
We recorded MEG continuously with a 275-channel (axial

gradiometer) whole-head system (CTF275, VSM MedTech) in a
magnetically shielded room. Two sensors were not operating resulting
in a total of 273 sensors. MEG data were digitized at 1200 Hz sampling
rate (300 Hz low-pass filter). Off-line, we removed line-noise with
notch-filters (at 50, 100, 150 Hz), low-pass filtered the data to 170 Hz
(zero phase Butterworth IIR filter, filter order 4) and down sampled it
to 400 Hz.

EEG/EOG
Along with the MEG, we recorded EEG using the EEG channels of

the CTF MEG system. Data were collected with an analog passband
of 0.16–300 Hz at a sampling rate of 1200 Hz. We used 32 Ag/AgCL
sintered flat electrodes (Easycap GmbH, Herrsching, Germany)
arranged according to the 10–20 system and two electrodes at the
mastoids. Additionally, we recorded a bipolar electrocardiogram
and the electrooculogram (EOG) from 7 electrodes. EOG electrodes
were placed over the nose, above and below each eye at the outer
canthi and below the left and right eye next to the nose. Data were
referenced to an electrode placed at the tip of the nose during
the recording. All electrode impedances were below 15 kOhm.

Off-line, the EEG data were re-referenced to the average of the 32
EEG electrodes. The EEG and EOG were low-pass filtered (cut-off
170 Hz, zero phase Butterworth IIR filter, filter order 4). EOG data
were re-referenced to the electrode Pz. For three subjects we
discarded the right inner infraorbital EOG channel because of poor
signal quality. We then derived the radial EOG (REOG; Keren et al.,
2010a) as the average of all EOG channels.

Structural MRI acquisition
We acquired individual T1-weighted high-resolution structural

images (MRI) of each subject with a 3 T Siemens MAGNETOM Trio
Scanner using a coronal magnetization-prepared rapid gradient
echo sequence. These MRIs were used to construct individual head
models for source analysis (see below).

Eye tracker recording
Alongwith the neurophysiological datawe recorded the eye position

using an MEG compatible remote eye tracker system (iView X MEG
50 Hz, SMI, Berlin, Germany). The system monitored the right eye
with an infrared camera to detect the pupil center and the cornea reflex
of the infrared light source. After calibration (9 points) the system
determined the gaze direction from the relative position of pupil and
the corneal reflex at a rate of 50 Hz. Additionally, digitized eye traces
were interpolated to match the MEG/EEG sampling rate (1200 Hz),
digital to analog converted and fed to the MEG system on-line. This
on-line procedure introduced temporal offsets of the eye tracker signal
in relation to the MEG/EEG data. Moreover, the digital to analog
conversion produced undesirable ringing artifacts. Therefore, the analog
signal recorded alongwith theMEG/EEG just served as a coarse reference
for the first alignment of the eye tracker and MEG/EEG signals.

Off-line, we aligned the digital eye tracking data to theMEG/EEG in a
2-step procedure. First, we interpolated the 50 Hz signal to 400 Hz
using cubic smoothing splines and computed the cross-correlation of
the interpolated digital eye tracker signal with the analog version
recorded with the MEG acquisition system. Then we accounted for the
offset identified by the latency of the peak in the cross-correlogram. In
a second step, we refined the alignment and corrected for the offset
between the EOG and the aligned eye tracker signal. To this end, we
smoothed the data with a Savitzky-Golay filter (4th order, 102.5 ms)
rectified and averaged all channels of both the EOG and the eye tracker
signals, and estimated the offset from the peak of the cross-correlation.

To improve the quality of the eye tracker signal, we interpolated
missing data. We detected periods with loss of eye tracking signal
characterized by pupil size and gaze position values close to zero. If
these data segments were not identified as blinks (see below) we
interpolated the missing data by piecewise constant interpolation.

Artifact rejection
Trials contaminatedwithmuscle artifacts, signal jumps or distortions

of themagnetic field due to e.g. cars passing in front of the buildingwere
rejected off-line using semi-automated threshold procedures applied to
the MEG signals. Since eye movements are part of the experimental
design standard EOG based procedures to detect eye blinks fail. We
detected eye blinks using a combination of eye tracker and EOG
signals. Data with vanishing pupil diameter and fast changes in
the EOG signal were identified as blink artifacts. Finally, we
inspected all MEG, EEG and EOG signals manually to ensure good
artifact rejection performance. On average 9.5±3.6% (mean±std)
of the trials were rejected.

Data analysis

Behavioral analysis
For detection of regular saccades we employed a velocity threshold

based algorithm. If coupled with a minimum saccade duration criterion
this algorithm has very few parameters and is accurate in the face of
stereotypical eye-movements such as those analyzed here (Salvucci
and Goldberg, 2000). Because the optimal velocity threshold parameter
depends on preprocessing and sampling of the recorded data as well
as on saccade amplitudes, we defined the velocity threshold in a data-
driven approach. We adapted the thresholds manually for the saccade
amplitudes in our task (5.5º and 11º) so that saccades were detected
while the number of false positiveswasminimized.We achieved this by
visual inspection of the data, taking into account a priori knowledge on
saccade timing.Wedefined periods as regular saccades inwhich the eye
movement velocity was higher than 28.6°/s for a duration of at least
22.5 ms. Periods where the saccade velocity exceeded 53.7°/s were
defined as saccades irrespective of saccade duration. We combined
all saccade intervals that were less than 7.5 ms apart from each other
into a single saccade interval. All other periods were labeled fixations.

The behavioral analysis revealed that subjects had a considerable
variability in saccade onset and also initiated saccades before the ‘go’
signal. However, since this study focused on the stereotypic saccadic
spike, we were not concerned about the exact timing of the saccades
in general.Wewere only interested in ensuring that subjects performed
saccades to the cued goal as instructed. To maximize the number of
trials to analyze, we accepted trials with saccades that were performed
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within a broad timewindow from500 msbefore to 770 ms after the ‘go’
signal. We excluded trials before 500 ms because they were unlikely to
be related to the instruction and saccades later than 770 ms to ensure
sufficient data following the saccade for subsequent analysis. In a next
step, we rejected all trials withwrong saccade orientation or amplitude.
For saccade categorization we applied drift correction at the fixation
period before the cue onset (−300 ms to −100 ms) and ensured that
the subjects fixated the asterisk before saccade onset within a tolerance
angle of 2.3°. The saccade target was considered correct if the closest
location was the cued one. Overall we discarded 13.5±12.7% (mean±
std) of the trials because of faulty behavioral performance.

Additionally, we analyzed miniature saccades that occurred within
the period from onset of the directional cue and onset of the guided
regular saccade. We defined miniature saccades using a threshold
procedure applied to the REOG: The 30–100 Hz band pass filtered
REOG signal was convolved with an SP-template (provided by Keren
et al., 2010a) and convoluted data segments exceeding 3 standard
deviations were detected. Every detected event whose amplitude did
not exceed 2° visual anglewas defined as aminiature saccade.Miniature
saccades occurred at an average rate of 1.45±0.34 per second (mean±
std) and followed a characteristic inhibition–enhancement sequence
after directional cue presentation. Note, that the low sampling rate of
the eye tracker (50 Hz) did not allow reliable microsaccade detection
based on eye tracker recordings.

Alignment of trials for saccadic spike characterization
Independent of saccade type or different saccademetrics, the saccadic

spike is generated consistently at saccade onset (Keren et al., 2010a).
However, saccade detection based on threshold procedures introduces
imprecision in the estimated saccade onset and generates jitter in the
timing of the saccadic spike over trials. When investigating the average
SP or SF over trials we had to correct for this jitter. We aligned each
trial to the first trough of the REOG within a time window of ±30 ms
from detected saccade onset (Keren et al., 2010a; Kovach et al., 2011).
This alignment procedure was applied tominiature and regular saccades
for all analyses where we examined the temporal and spatial
characteristics of the average saccadic spike.

Description of the saccadic spike on sensor level in MEG and EEG
We calculated the time course as well as the topography of the

event related average of the saccadic spike for MEG and EEG. For
the topographies we provide, in addition to the event related average
for MEG and EEG, the root-mean-square of the SP and the planar
gradient estimation of the SF for MEG. A baseline of 280 to 180 ms
before saccadic onset was subtracted from the average time course
of the MEG/EEG data.

The saccadic spike artifact occurs simultaneously with another eye
movement related artifact—the rotation of the corneo-retinal dipole,
also known as corneo-retinal potential in EEG. This rises slowly and
adds to the saccadic spike artifact. It was shown that it heavily
distorts the second deflection of the biphasic spike in EEG (Keren et
al., 2010a; Riemslag et al., 1988). Therefore, we focused on the first
deflection of the saccadic spike to study its topography. We used a
baseline directly at saccade onset (7.5 ms before the first saccadic
spike peak, onset was defined by the grand average time course of
the eye trace). By using this single point baseline, we maximally
separate the signal of the saccadic spike artifact from other signals
related to saccade generation and preparation like the antecedent
potential (Armington, 1978; Jagla et al., 2007; Kurtzberg and Vaughan,
1982), which starts approximately 100–150 ms before saccade onset.

We assessed statistical significance for the event related amplitude
of the saccadic spike across subjects (random effects) by applying
Student's t-test, (n=13 with n: number of participants) at each
sensor. We accounted for multiple comparisons using Bonferroni
correction (alpha=0.01, corrected for the number of sensors).
Next to event related potentials, another commonly used measure
in EEG is the root-mean-square. Consequently, we additionally report
this measure for the SP. In short, we calculated for each subject
individually the root-mean-square of the baseline corrected event
related average across the time points of the first peak of the SP
(time: tN0 ms, tb12.5 ms, baseline: time t=0). We present the
average of the root-mean-square over subjects.

Most MEG systems use either axial or planar gradiometers to record
the magnetic fields. The system we used has axial gradiometers. To
provide a general description of the SF we additionally computed a
planar gradient estimate for our results. To this end, we combined
horizontal and vertical estimates of the planar gradient of all sensors
for each subject's baseline corrected SF (Bastiaansen and Knösche,
2000). To assess where amplitude deflections of the planar gradient
estimate were consistently highest across subjects, we normalized
the planar gradient estimation of each subject's SF to a standard normal
distribution and tested for statistical significance of the positive
deflections with a one-sided Student's t-test over subjects (alpha=
0.01, Bonferroni corrected for the number of sensors).

For visualizationwe show topographieswith the physical quantities
(electrical potential and strength ofmagneticfield). These topographies
are statistically masked such that values that do not reach statistical
significance are presented with a semi-opaque white cover.

Lateralization of the saccadic spike artifact
We analyzed topographies of the saccadic spike for leftwards and

rightward saccades separately. For this purpose we computed the
saccadic spike at the time of maximal lateralization, which was
derived as the maximal difference in amplitude between ipsi- and
contralateral EOGs in relation to saccade direction (5 ms after saccade
onset).

Spectral characteristics of the SF for regular and miniature saccades in
MEG

To investigate the spectral characteristics of the saccadic spike in
MEG we derived a time–frequency representation of the SF using
Morlet's wavelets (Tallon-Baudry et al., 1996). The characteristic
parameter for the wavelet family was, f/σf≈5.8 where σf is the
spectral smoothing and f is the center frequency. We calculated
the frequency transform at 25 logarithmically equidistant center
frequencies from 16 to 128 Hz.We computed the transform for discrete
time points at −100 ms to 100 ms in 10 ms steps (baseline estimated
from the average at time t=−400 ms to −350 ms, in 10 ms steps,
baseline for miniature saccades: t=−135 ms to −85 ms in 10 ms
steps). For statistical analysis we log-transformed the power estimates
to render distributions more normal and computed a Student's t-test
on the difference in power relative to baseline over participants. Since
the saccadic spike effect size is statistically weaker at a particular
point in the time–frequency representation than at the peak in
the time domain we used a less conservative method for multiple
comparison correction. We controlled for multiple comparisons
using false discovery rate (FDR) correction with q=0.01 (Benjamini
and Hochberg, 1995; Genovese et al., 2002).

Physical forward model for source analysis
To estimate neural activity at the source level, we first derived

physical forward models for each subject. To this end, we defined a
regular grid (0.7 cm spacing) in MNI space that comprised, in addition
to the cortex, the region of the eyeballs and extraocular muscles. We
affine transformed this grid into individual head space using the
participants' individual MRI, and aligned the MEG sensors to the
head geometry based on 3 fiducial points (nasion, left and right
ear, defined in the MEG by 3 head localization coils). To derive the
physical relation between sources and sensors we employed a single-
shell volume conductor model (Nolte, 2003). On top of the regular
grid, we computed leadfields for the center location of the extraocular



1661C. Carl et al. / NeuroImage 59 (2012) 1657–1667
muscles. The location of the contralateral center of the extraocular
muscles was used for suppression in the beamforming source analysis
(see below). We defined these positions manually in the MNI template
brain (Holmes et al., 1998; MNI=[−28, 38, −37] for left hemisphere,
MNI=[28, 38, −37] for right hemisphere).

Source analysis of the SF using beamforming
We used adaptive linear spatial filtering (beamforming; Gross et

al., 2001; Van Veen et al., 1997) with coherent source suppression
(Brookes et al., 2007; Dalal et al., 2006) to estimate the amplitude of
signals at the source level. The coherent source suppression approach
accounts for thehighly synchronized electrical activity of the extraocular
muscles across the hemispheres (Kovach et al., 2011) that would
otherwise lead to signal cancelation in beamforming. In short, for
each source location, three orthogonal linear filters (for the three
orientations at each source) were computed that pass activity from
that location with unit gain and block activity from dipoles of any
orientation at the location of the contralateral extraocular muscles,
while maximally suppressing activity from any other source.
Subsequently, the filters were linearly combined to a single filter that
points to the direction of the dominant dipole (Hipp et al., 2011).

Before deriving source estimates of the SF, we band-pass filtered the
event related signal by convolution with a 3-point filter to attenuate
residual contributions from the corneo-retinal artifact. The 3-pointfilter
was adapted to the temporal structure of the biphasic saccadic spike
signal (filter kernel: −0.5 at −7.5 ms; 1 at 0 ms; −0.5 at 5 ms). Then,
we estimated the covariancematrix that is needed for the beamforming
filter from concatenated data epochs±30 ms around the first SF peak of
all saccades. The average difference between the first peak of the SF and
the baseline at the onset of the SFwas then projected into source space.
The absolute value served as a source estimate. This source estimate is
subject to a positive bias. To account for this problem, we estimated
and subtracted the bias. To this end, we randomly permuted the SF
peak and SF baseline and estimated the source distribution for these
data 1000 times. The average served as a bias estimate. Finally, we
derived the neural activity index (NAI) of the source estimate that
accounts for the spatial bias of beamforming for deep sources (Van
Veen et al., 1997). For statistical analysis, we computed Student's
t-test of the NAI at each voxel across subjects (alpha=0.01, Bonferroni
corrected for the number of voxels). Furthermore, we used a variant of
beamforming for frequency domain data (Gross et al., 2001) to estimate
the sources at 64 Hz at the time of saccade onset (temporal smooth-
ing=87ms, frequency smoothing=21.96 Hz). We derived a filter
estimation from the real part of the cross-spectral-density matrix (cf.
Hipp et al., 2011) at the time of saccade onset and baseline (t=−400
to −350 ms for regular saccades, t=−135 to −85 ms for miniature
saccades) and computed the relative change of the signal power. The
logarithmic transform of the average power source estimates at saccade
onset and at baseline entered the statistical analysis. We tested at each
voxel for significance of the difference of those power estimates over
subjects using the Student's t-distribution (q=0.01, FDR corrected for
the number of voxels).

For visualization we overlaid the functional data onto the structural
MRI of the MNI template brain, masked unsignificant values and inter-
polated the source data to 1 mm resolution.

Dipole fitting of the SF
To further investigate the sources underlying the lateralization of

the saccadic spike of horizontal saccades we employed dipole fitting
in addition to the distributed source analysis. For each subject
and saccade direction, we fitted two equivalent current dipoles.
We optimized the dipole orientation while dipole position was
fixed to the previously defined center of the extraocular muscles
(left dipole: MNI=[−28, 38, −37] and right dipole: MNI=[28,
38, −37]). Average explained variance of this dipole models was
77.43%. To summarize and visualize the subjects' individual dipole
orientations, we projected each subject's normalized dipole onto a
common plane. This plane was defined in the MNI template brain
by the vector connecting both dipole positions and an orthogonal
projection of the average orientation vector of all medial and lateral
rectus muscles. We then computed the mean angle between dipoles
for leftwards and dipoles for rightwards saccade trials. We tested for
significant rotation of dipoles between saccades to the left and to the
right using a nonparametric random permutation test (Nichols and
Holmes, 2002). This had the advantage that we did not need to make
any assumption about the distribution of the rotation angles. We
derived a Null hypothesis distribution by 1000 times randomly
permuting saccade labels ‘right’ and ‘left’ and computing the mean
angle between dipoles and then determined the p-value.

Comparison of the SF and SP for miniature and regular saccades
We quantified the similarity of scalp topographies of the SF for

miniature and regular saccades by computing the linear correlation
across sensors. To assess differences in SF and SP amplitudes, we
computed the absolute SF/SP amplitude for miniature, 5.5°, and
11° saccades at channels of interest (see inset, Figs. 7C and D) and
tested for pairwise amplitude difference across subjects, using Student's
t-test (Bonferroni corrected for 2 comparisons).

Results

The saccadic spike artifact in MEG and EEG

To investigate the effect of the saccadic spike on MEG/EEG signals
we performed a delayed saccade experiment with targets at two
distances (5.5°/11°) and two directions (left/right). In each trial, a
directional cue instructedparticipants about the saccade target location.
Participants memorized the location during a delay period of 1 s before
they actually performed the saccade (Fig. 1).

First, we analyzed the grand average time course of the saccadic
spike artifact pooled over both saccade directions and both amplitudes.
To this end, we aligned the signals to saccade onset and subtracted a
baseline from 280 to 180 ms before the saccade (Fig. 2A). The average
saccade duration was about 50 ms, while the eye movement velocity
peaked around 30ms after saccade onset (Fig. 2A, first panel). The
time course of the REOG (i.e. the average signal of all EOG channels
relative to the parietal electrode ‘Pz’), the EEG, and the MEG revealed
a brief biphasic saccadic spike at saccade onset. The saccadic spike
artifact peaked around 7.5 ms after saccade onset, inverted its polarity,
and peaked again 15 ms after saccade onset (Fig. 2A, lower three
panels). The second peak of the saccadic spike artifact was overlaid
with the concurrent corneo-retinal artifact reflecting the rotation of
the corneo-retinal dipole (Keren et al., 2010a). To isolate the SF or SP,
we therefore focused the following analyses on the first deflection of
the saccadic spike.

The subjects' average scalp topography of the SP in EEG was
characterized by a strong negative potential of up to −16 μV at
frontal sensors and a moderate positive potential of up to 8 μV at
parietal sensors (Fig. 2B; average reference; pb0.01, Bonferroni corrected
for n=273 sensors). Accordingly, the root-mean-square of the EEG
peaked at similar frontal and parietal sensors (Fig. 2C). Two sensor
types are commonly used inMEG systems, axial gradiometers and planar
gradiometers (Hämäläinen, 1995; Hämäläinen et al., 1993). Our MEG
setup uses axial gradiometers, however, in the following description of
the MEG sensor topographies we also present an estimate of the corre-
sponding planar gradiometer representation (see Materials and
methods). The SF in MEG was characterized by increases and de-
creases at frontal and temporal sensors for axial gradiometers
(Fig. 2D; pb0.01, Bonferroni corrected for n=273 sensors). The average
absolute amplitudes across subjects were highest at temporal sensors
reaching 14 pT. In the corresponding planar gradient representation
the strongest effect of the SF was at the anterior half of the temporal
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sensors (Fig. 2E; pb0.01, Bonferroni corrected for n=273 sensors). In
conclusion, both MEG and EEG sensors were strongly affected by the
saccadic spike. However, the spatial topography differed substantially.
In particular, the SF in MEG did not significantly affect parietal sensors.
Source analysis of the saccadic spike

Next, we analyzed the sources of the saccadic spike. We used
adaptive linear spatial filtering (beamforming) applied to the broad-
band SF signal. The sources were localized to the extraocular muscles
of both eyes (Fig. 3A; pb0.01, Bonferroni corrected for n=11,078
voxels). To elaborate on the spatial specificity of these sources, we
omitted statistical thresholds (Fig. 3B). The activity of the sources of
the saccadic spike artifact dropped from the maximum at the extrao-
cular muscles without revealing any other prominent local maxima.
Thus, source analysis using beamforming, spatially separated the SF
from other neurophysiological signals into the region of the extraocu-
lar muscles.

Spectral signatures of the saccadic spike in MEG

Weused time–frequency analysis to study the spectral characteristics
of the saccadic spike artifact in MEG. The spectro-temporal pattern was
characterized by a broadband gamma frequency range increase (~ 32
to 128 Hz) around the time of saccade onset (Fig. 4A; pb0.01, FDR
corrected for n=21×25 time×frequency points). The strongest
power increase at 10 to 30 ms and 64 Hz was at frontal and temporal
sensors. The source distribution for this frequency range was highly
similar to that of the event related response (Fig. 4B; pb0.01, FDR
corrected for n=11,078 voxels; compare to Fig. 3). Thus, in line with
previous EEG and iEEG studies (Kovach et al., 2011; Yuval-Greenberg
et al., 2008) the saccadic spike induced signals that closely resemble
neurophysiological gamma range activity in the MEG sensors.

The topography of SP and SF reflects saccade direction

Many experimental designs involve lateralized covert attention
that has been shown to influence the spatial statistics of miniature
saccade direction (e.g. Laubrock et al., 2010). It is therefore important
to understand potential lateralization of the accompanying SP and SF,
since this might induce systematic confounds in such experiments.

As a starting point, we analyzed the time course of the saccadic
spike at left, central and right EOGs around saccade onset for
leftwards saccades (Fig. 5A). The latencies of the first saccadic
spike peak increased from ipsilateral to contralateral electrodes.
However, this shift is unlikely to reflect a change in latency of
the saccadic spike itself but likely reflects the corneo-retinal artifact,
which adds in a spatially specific manner to the saccadic spike
artifact. The corneo-retinal potential with its positive amplitude
at ipsilateral and negative amplitude at contralateral EOG electrodes
reduces the negative peak of the SP at ipsilateral EOGs and increases
the SP at contralateral sites. Thus, while the onset and peak latency of
the saccadic spike may actually remain the same, the superposition
with the slowly rising corneo-retinal potential appears as a shift of
the SP peak dependent on channel location. Consequently, to study
the lateralization of the saccadic spike artifact as a function of
saccade direction we minimized the influence of the slowly rising
corneo-retinal artifact by selecting an early analysis window 2.5 ms
before the saccadic spike peak. At this time, the SP topography was
lateralized depending on the direction of the saccade (Fig. 5B). The
negative deflection of the SP was higher at ipsilateral frontal
electrodes, while the positive peak at posterior electrodes was
shifted towards the side contralateral to the saccade direction.

In line with the SP in EEG, the SF in MEG was lateralized. The
amplitude of the SF was significantly higher at frontal and temporal
sensors ipsilateral to saccade direction (axial gradiometers; Fig. 5C,
upper panel; pb0.01, Bonferroni corrected for n=273 sensors).
This finding was paralleled by a planar gradient topography with
higher amplitudes at ipsilateral temporal electrodes (Fig. 5C, lower
panel; pb0.01, Bonferroni corrected for n=273 sensors). Thus, for
both EEG and MEG, we found a clearly lateralized saccadic spike
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artifact. This lateralization may complicate the isolation of signals
of neuronal origin.

Orientation of extraocular muscle dipoles reflects saccade direction

We hypothesized that the origin of the lateralized SP/SF sensor
topography is related to asymmetrical contraction of the extraocular
muscles for left and right saccades. To elaborate on this hypothesis,
we fitted the SF with equivalent current dipoles. We placed a dipole
in the center of the extraocular muscles of each eye and optimized
the orientation of these dipoles for each subject individually. Then
we analyzed the orientation of the dipoles in the plane spanned
by lateral and medial rectus muscles, the muscles mainly responsible
for horizontal movements of the eye. We tested if the orientation of
the SF dipoles changed depending on the saccade direction. Dipoles
for both saccade directions were on average oriented towards the
outer borders of the eyeballs. Contrasting the dipole orientation for
leftwards with rightwards saccades revealed a significant rotation of
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13.26° towards the ipsilateral side across subjects (Fig. 6; p=0.01,
random permutation test). Consequently, the dipole orientation of a
horizontal saccade followed the orientation of the contralateral rectus
medialis and ipsilateral rectus lateralis muscle.

Comparison of SF of miniature and regular saccades

Up to this point, we studied the SP and SF at the onset of regular
saccades. However, a major problem is the spike artifact related to
miniature saccades that occur even under fixation. Thus, we next
analyzed the SF and SP induced by miniature saccades. We
extracted miniature saccades with a range of less than 2° amplitude
from the fixation period of our experiment (see Materials and
methods). The SF of miniature saccades had a similar topography
as the regular saccades (Figs. 7A and B). The sensor topographies
of the SF of both saccade types were highly correlated (r=0.86).
However, the SF of miniature saccades differed in amplitude from
that of regular saccades. The average amplitude over frontal and
temporal regions of interest was ~200% larger for regular saccades
compared to miniature saccades (Fig. 7C; p=3.6×10−6, Bonferroni
corrected for n=2 comparisons). In contrast, the SF revealed only
small differences in amplitude between saccades of 5.5° and 11°
(8% signal increase, p=8.2×10−4, Bonferroni corrected for n=2
comparisons). Similar to the SF, the average SP amplitude at frontal
andparietal electrodes of interestwas ~110% larger for regular compared
to miniature saccades (Fig. 7D; p=2.1×10−5, Bonferroni corrected for
n=2 comparisons). The difference in average SP amplitude between
11° and 5.5° saccades remained nonsignificant (5% signal increase for
11° saccades, p=8.6×10−2, Bonferroni corrected for n=2
comparisons).

Source analysis of the SF from miniature saccades revealed the
strongest power changes at 64 Hz at the extraocular muscles behind
the eyes (Fig. 8; pb0.01, FDR corrected). Thus, the source distribution
of the SF from miniature saccades resembled the source distribution
that we derived for regular saccades but with reduced amplitude
(compare to Fig. 4B). In summary, the amplitude of the SF was
modulated nonlinearly with saccade size but the spatial distribution
at source and sensor level remained constant.

Discussion

We provide the first characterization of the saccadic spike field
(SF), the saccadic spike artifact in MEG. Our results show that the
saccadic spike artifact affectsMEG signalsmainly at frontal and temporal
sensors. We observed that the topography of the SF is modulated with
-40 40
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of saccades relative to baseline average from 400 ms to 350 ms before saccade onset.
ower response resolved in time and frequency for selected regions of interest (indicated
e t=0 ms). Unmasked regions denote significant difference from zero (t-test, pb0.01,
ate brain. Data are masked by statistics (t-test, pb0.01, FDR corrected).



-0.11 

(µV)

0.11 -80 

 (fT)

80 

Saccades L Saccades R Saccades L Saccades R

MEGEEG

0 10 20 30 40
Time (ms)

0

10

20

30

40

50

E
O

G
 (

µV
)

Saccades L
A B C

Fig. 5. Saccade direction reflected in SP and SF lateralization. A. Grand average time course of the SP around onset of leftwards saccades at different EOG sensors. The standard
deviation is depicted in transparent shading. The inset shows the locations of EOG electrodes. As reference served electrode ‘Pz’ (black). B and C. Topographies of the SP/SF for
leftwards and rightwards saccades respectively at the time of maximal lateralization (time t=5 ms, dashed line in A). The signal at saccade onset (time t=0 ms) was subtracted as
baseline. All topographies except for the root-mean-square (B, lower panel) are statistically masked (t-test, pb0.01, Bonferroni corrected). B. SP in EEG. Top: event related signal.
Bottom: root-mean-square. C. SF in MEG. Top: axial gradiometer representation. Bottom: planar gradiometer representation.

1664 C. Carl et al. / NeuroImage 59 (2012) 1657–1667
saccade direction while the SF amplitude depends on saccade size.
Furthermore, our source analysis localizes the origin of the SF to the
extraocular muscles. Because of its close resemblance to neural
gamma band activity and its modulations in appearance and rate
with experimental manipulations the saccadic spike artifact is prone
to confusion with true neuronal activity in any EEG/MEG experiment.
The detailed characterization of the SF in this study constitutes a solid
basis for assessing possible saccadic spike related contamination in
MEG experiments.

The saccadic spike in MEG and EEG

We found that the SF is a biphasic transient signal of ~24 msduration
and a peak-to-peak response of ~8 ms occurring at saccade onset. Its
power spectrum is dominated by energy in the gamma frequency
range (~32–128 Hz). With these properties it is consistent with the
well-known SP in EEG (Keren et al., 2010a; Yuval-Greenberg et al.,
2008). However, a crucial issue of great practical importance for the
Saccades L 
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Fig. 6. Current dipoles for SF of saccades to left and right. Grand average dipole mo-
ments for fixed dipole positions at the center of the extraocular muscles rotate depend-
ing on the saccade directions. Dipoles were projected onto the nearest horizontal brain
slice (MNI coordinate z=−37) for illustration. Red: average dipole direction for left-
wards saccades. Green: same for rightwards saccades. Lateral r./medial r.: lateral/medial
rectus muscle of the left eye.
interpretation of the data is the difference in sensor topography.
While the SF affects frontal and temporal MEG sensors, the SP has
an impact on frontal and posterior EEG sensors. Both SF and SP are
the measurement specific signatures of the saccadic spike produced
with saccade initiation.

Source localization confirms extraocularmuscles as saccadic spike generator

Our results provide the first distributed source estimation of the
saccadic spike field in MEG. We reliably localized the saccadic spike
artifact of the miniature and regular saccades in the centers of the
extraocular muscles of each eye. The source localization is robust
with respect to different saccade types (miniature or regular sac-
cades) and different signal representations (frequency or time
domain). In accordance with the spatial resolution of MEG, the
source reconstruction does not resolve individual muscles in the
periorbital space but locates the source into the region spanned
by the extraocular muscles of each eye. Nevertheless, the source
estimation provides strong evidence for the muscular origin of
the saccadic spike artifact arguing against any cortical contribution
(Balaban and Weinstein, 1985; Brooks-Eidelberg and Adler, 1992;
Csibra et al., 1997, 2000; Parks and Corballis, 2008). Our results
substantiate previous EEG studies that suggested the myogenic
origin of the saccadic spike artifact based on patient data and sensor
characteristics of the saccadic spike (Becker et al., 1972; Blinn, 1955;
Boylan and Doig, 1989b; Dimigen et al., 2009; Keren et al., 2010a;
Moster and Goldberg, 1990; Picton et al., 2000; Riemslag et al.,
1988; Thickbroom andMastaglia, 1985, 1987) or provided constrained
source models of the SP (Hassler et al., 2011; Picton et al., 2000;
Thickbroom and Mastaglia, 1985; Yuval-Greenberg et al., 2008). Our
findings further agree with evidence from intracranial recordings that
observed the highest saccadic spike amplitudes in the temporal pole
near the extraocular muscles (Jerbi et al., 2009; Kovach et al., 2011).
In summary, our source estimation confirms that the saccadic spike
reflects the engagement of the extraocular muscles at saccade onset.
Furthermore, we show that the artifact can be reliably identified by
distributed source analysis.
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Modulation of SF with saccade metrics

Even in experiments demanding steady fixation, experimental
stimulus and task parameters can influence the size (Gowen et al.,
2005; Yuval-Greenberg et al., 2008) and direction (Engbert and
Kliegl, 2003; Gowen et al., 2007; Laubrock et al., 2010; Rolfs et al.,
2004; Turatto et al., 2007) of fixational eyemovements. Consequently,
understanding the modulation of SF with saccade metrics is necessary
to assess the effect of SF artifacts in experiments with asymmetric
saccade statistics.

Our results show, that the SF inMEG is enhanced ipsilateral to saccade
direction. The effect is strongest at temporal sensors. These findings are
consistent with the lateralized topography of the saccadic spike that we
and others observed in EEG (Keren et al., 2010a; Kovach et al.,
2011; Moster and Goldberg, 1990; Moster et al., 1997; Thickbroom
and Mastaglia, 1985, 1986). It has been suggested that the saccadic
spike reflects the summation potential of synchronously recruited
motor units of the extraocular muscles (Blinn, 1955; Moster and
Goldberg, 1990; Picton et al., 2000; Thickbroom and Mastaglia,
1985). Building on our beamforming results, we demonstrate that
a dipole model of the lateralized SF is indeed compatible with the
asymmetrical contraction pattern of the predominantly engaged
muscles during horizontal saccades, namely, the ipsilateral rectus
lateralis and contralateral rectus medialis muscle.

We expect similar saccadic spike topographies for horizontal
saccades that are performed from peripheral locations of the visual
A
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Fig. 8. Source analysis of SF from miniature saccades. Source of the relative change in
signal power at 64 Hz at saccade onset compared to average baseline at 135 ms to
85 ms before miniature saccade onset. Functional data are overlaid on the MNI tem-
plate brain and statistically masked (t-test, pb0.01, FDR corrected).
field towards the center. These saccades engage the same muscles as
the centrifugal saccades we observed but with a different contraction
level before saccade onset, affecting probably the amplitude of the
saccadic spike. Saccades in directions other than the horizontal plane
require the participation of different extraocular muscles, which
presumably slightly changes the topography of the SF as indicated by
previous EEG studies (Keren et al., 2010a; Thickbroom and Mastaglia,
1986).

The SF for saccades of different amplitudes did not differ in sensor
topography or the distribution of sources. However, we found strongly
reduced SF amplitudes for miniature saccades compared to the 5.5°
and 11° saccades, but only minor amplitude differences between
both types of regular saccades. We found a similar relation for EEG
except that the difference between both types of regular saccades
did not reach significance. These results are in line with previous
EEG studies, supporting a nonlinear dependence of saccade size on
saccadic spike amplitude (Armington, 1978; Boylan and Doig,
1989b; Keren et al., 2010a; Kovach et al., 2011; Riemslag et al.,
1988; Thickbroom and Mastaglia, 1985). These studies observed an
amplitude dependence for saccades up to 10° while the amplitude
of the saccadic spike remained constant for larger saccades. Most
probably, the maximal recruitment of motor units is already
reached for these large saccades (Thickbroom and Mastaglia,
1987). The similarity of the sensor topography and source localization
of the SF for spontaneous miniature and guided regular saccades
suggests that both types of saccades have the samemuscular recruitment
pattern and thus the same sources underlying their saccadic spike
artifact.

In summary, our results show that saccade metrics affect the
topography and amplitude of both the SF and the SP in a characteristic
manner. Any experimental comparison that may be accompanied by
asymmetric saccade patterns could therefore be subject to a potential
confound with metric specific changes of the saccadic spike artifact
and should be carefully controlled.

Practical implications for MEG experiments

In contrast to EEG, the saccadic spike artifact in MEG does not
affect posterior sensors. Consequently, the SF is not prone to mis-
interpretations as gamma activity reflecting higher visual processes
in parietal and occipital areas, as it is the case for EEG (Yuval-
Greenberg et al., 2008). However, the SF may be confused with
neuronal activity originating from frontal and temporal brain regions.
For example, the response to auditory stimulation at the MEG sensor
level might be contaminated by saccadic spike induced gamma band
responses in the temporal cortex. The miniature saccade rate is
characteristically modulated by auditory stimulation and additionally
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depends on experimental manipulations. Consequently, auditory
stimulation can lead to task modulated gamma band responses due
to the saccadic spike artifact (Yuval-Greenberg and Deouell, 2011).
For auditory MEG experiments, the SF artifact could then confound
genuine neural responses within the auditory processing stream
since both map to overlapping temporal MEG sensors. Similarly, any
neural activity reflecting higher cognitive processing in temporal
and prefrontal cortex that maps to similar sensors as the SF might be
subject to artifact contamination from the saccadic spike. Thus, unlike
the SP in EEG, the SF in MEG is not prone to confusion with neuronal
activity in parietal and occipital cortex, but putative frontal and
temporal neuronal processes need to be carefully controlled for
the saccadic spike artifact. It should be further noted, that for
some analyses artifacts could have consequences far beyond their
topographical maximum. For example when computing measures
of neuronal interactions such as phase synchronization between
sensors the saccadic spike artifact may be problematic for a large
part of all sensors.

To control for saccadic spike artifacts the first step is to investigate
the modulation of the saccadic spike rate along with the experimental
contrast at hand. Saccades and miniature saccades can be measured
via video based eye tracking alongwithMEG/EEG but this is technically
challenging and often the equipment is not available. An efficient and
practical alternative is to follow the procedure described by Keren et
al. (2010a) that detects SPs in the REOG. Importantly, to apply this
approach in MEG experiments a parietal reference electrode is needed
to measure the REOG. We highly recommend adapting this as a
standard procedure in MEG experiments. If the saccadic spike rate
is indeed modulated along with the experimental contrast, putative
effects of neuronal origin need to be critically evaluated. Our characteriza-
tion of the SF provides a reference for this purpose. The precise compari-
son of the temporal, spatial and spectral characteristics of the signal of
interest with the characteristics of the saccadic spike artifact may help
to clarify the origin.

If the saccadic spike artifact covers potential neural signatures
artifact cleaning and separation procedures are required. Our investiga-
tions provide a starting point for future studies exploring artifact
cleaning procedures on the removal of the saccadic spike artifact in
MEG. Promising candidates are independent component analysis or
linear regression techniques that have successfully been applied in
EEG to remove saccadic spike artifacts (Hassler et al., 2011; Keren
et al., 2010a; Kovach et al., 2011; Nottage, 2010).

However, most cleaning procedures only augment the signal-to-
noise ratio without perfectly separating noise from genuine neural
signals (Keren et al., 2010a; Nottage, 2010; Shackman et al., 2010) and
should therefore not replace a careful identification and visualization
of the artifact. As an alternative to these procedures, we suggest an
analysis in source space. Beamforming is especially well suited for
separating artifacts from cortical sources, because it does not rely on
inverse solutions. Hence, beamforming does not assume cortical
sources for the entire sensor signal containing putative artifacts (Baillet
et al., 2001).We showed that beamforming reliably locates the SF in the
extraorbital region. While neuronal activity in the orbitofrontal cortex
or the temporal pole may still be difficult to disentangle from the
artifact, our results provide evidence that beamforming is suitable
for spatially separating the saccadic spike artifact from neuronal signals
if the latter is sufficiently distant from the former.
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