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Abstract

A goal of sensory coding is to capture features of sensory input that are behaviorally relevant. Therefore, a generic principle
of sensory coding should take into account the motor capabilities of an agent. Up to now, unsupervised learning of sensory
representations with respect to generic coding principles has been limited to passively received sensory input. Here we
propose an algorithm that reorganizes an agent’s representation of sensory space by maximizing the predictability of
sensory state transitions given a motor action. We applied the algorithm to the sensory spaces of a number of simple,
simulated agents with different motor parameters, moving in two-dimensional mazes. We find that the optimization
algorithm generates compact, isotropic representations of space, comparable to hippocampal place fields. As expected, the
size and spatial distribution of these place fields-like representations adapt to the motor parameters of the agent as well as
to its environment. The representations prove to be well suited as a basis for path planning and navigation. They not only
possess a high degree of state-transition predictability, but also are temporally stable. We conclude that the coding
principle of predictability is a promising candidate for understanding place field formation as the result of sensorimotor
reorganization.

Citation: Weiller D, Märtin R, Dähne S, Engel AK, König P (2010) Involving Motor Capabilities in the Formation of Sensory Space Representations. PLoS ONE 5(4):
e10377. doi:10.1371/journal.pone.0010377

Editor: Jeffrey Krichmar, University of California Irvine, United States of America

Received November 24, 2009; Accepted March 21, 2010; Published April 28, 2010

Copyright: � 2010 Weiller et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by European Commission FP7-ICT-2007-1 (Grant Agreement Number 217148 (PK)). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dweiller@uos.de

Introduction

In order to predict neuronal response properties on the basis of

their sensory input, a number of generic sensory coding principles

have been proposed. The most prominent are sparse coding [1]

and temporal coherence [2,3]. The former is closely related to

efficient coding and redundancy reduction [4], the latter to slow

feature analysis and stability [5,6]. These principles successfully

capture some characteristic neuronal properties of early sensory

cortices [7,8,9]. Employing them in a hierarchical structure leads

to high-order sensory representations such as place fields [2,10].

Overall, the description of neuronal response properties by

quantitatively defined principles has proven to be quite successful

in furthering our understanding of sensory processing [11].

The principles of sparseness and temporal coherence were

originally formulated without explicit reference to the behavioral

repertoire of the agent. Agent behavior influenced learning in the

sensory hierarchy only indirectly through the statistics of the

sensory input selected by action. Specifically, active sensing and

passive replay of recorded sensory events would have the same

effect on learning. It is far from obvious whether variation in the

statistics of the passively received sensory stimuli of different

mammals is large enough to explain the striking cross-species

differences in the layout of sensory processing [12].

Common to these principles of sensory coding is that good

sensory representations should emphasize relevant aspects of the

sensory information. Given identical sensory input, different

aspects might be relevant for different agents. Hence, relevance

is beyond the scope of passively perceived sensory input. Rather,

relevance is grounded in behavior of an agent. The algorithm

proposed herein aims to find sensory representations that are

relevant given the behavioral capabilities of a situated agent,

interacting with its environment. In accordance with König and

Krüger [13], we posit that these sensory representations should

maximize the predictability of sensory state transitions given a

motor action.

The proposed optimization algorithm is based on a general,

graph-theoretic framework and, in principle, is able to deal with

arbitrary sensors and effectors. The algorithm divides the agent’s

sensory space into discrete states. The agent learns the transition

probability between these states by executing action primitives

from its motor repertoire in an exploratory fashion. These state

transition probabilities are then evaluated with respect to their

predictability and the degree of their decorrelation. Here,

predictability refers to the sparseness of the distribution of

potential target states. A probability distribution is sparse when

it contains many low values (ideally zeros) and relatively few high

values (ideally a single entry of unit value). The closer the state

transition dynamics of a sensorimotor system are to this ideal, the

more deterministic it becomes and the more predictable it is. The

predictability of a state is defined by the sparseness of transition

probabilities, averaged over actions.

The degree of decorrelation of two states quantifies the

dissimilarity of their transition probability distributions. In order

to increase predictability and decorrelation, the algorithm

iteratively modifies the current sensory space discretization by
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either cutting or merging states. This optimization process is

guided by a number of rule-based heuristics and increases an

objective function based on the measures of predictability and

decorrelation.

We applied this optimization algorithm to an agent moving in a

virtual two-dimensional environment. Here, the agent’s sensory

space was spanned by its position within the environment. We

found that the proposed algorithm successfully improved the

predictability and decorrelation of the agent’s sensory space

representation. Optimized states corresponded to spatially com-

pact, isotropic regions of the agent’s two-dimensional maze

environment, much like discrete place fields [14]. These properties

of optimized states were robust and only slightly affected by the

choice of motor parameters. In contrast, the size of optimized

states was strongly dependent on motor parameters, while the

spatial distribution of states depended on motor parameters as well

as on environment type. We also demonstrate that representations

optimized for predictability are a suitable basis for path planning

and navigation, offering good navigability while keeping the

representation low-dimensional. Furthermore, we test our claim

that including knowledge of the agent’s motor repertoire in the

optimization process improves the quality of the resulting

representations. We compare optimized-state configurations

generated from purely sensory data to those generated from

sensorimotor data. We find that the latter possess significantly

higher predictability values and are spatially more compact and

smaller. Including knowledge of motor capabilities also reduces the

variability of the outcome of the optimization process. A

comparison between states resulting from optimizing temporal

stability [10] and those resulting from optimizing predictability,

revealed that both representations were nearly equally temporally

stable, whereas predictability was markedly higher in the latter.

Methods

Here we introduce the optimization algorithm for the

reorganization of a simulated agent’s sensory space representation.

The goal of this algorithm is to arrive at a representation that

renders the state transitions caused by a motor action as

predictable as possible, while representing transition dynamics in

a decorrelated, i.e. efficient, manner.

The algorithm reaches this goal by dividing sensory space into

disjoint discrete states. We will refer to these states as macrostates

and to a specific sensory space discretization as a macrostate

configuration. The dynamics of a sensory state transition resulting

from an action are captured in the form of macrostate-transition

probabilities. Thus, agent behavior is modeled as a Markov

decision process. The predictability and the degree of decorrela-

tion of a macrostate configuration are determined by examining

the transition probabilities between its constituent macrostates.

Simulating agent behavior
We simulated an agent moving in a number of two-dimensional

environments. It could execute any one of eight action primitives

corresponding to traveling a fixed distance (parameterized by step-

length) in one of eight equally spaced directions in the interval from

0u to 360u. Step-length and movement direction were subjected to

additive Gaussian noise (parameters: step-length noise sSL, angular

noise sA). The agent’s sensory space was spanned by its position in

the two-dimensional environment. The action parameters were

varied to explore their influence on the outcome of the

optimization process. The statistics presented in the result section

are based on five optimization runs for every combination of step-

length (1, 2, 3 and 4), sSL (1/15, 2/15 and 3/15) and sA (2u, 6u

and 12.3u). As the agent’s behavior was simulated, spatial units

were chosen such that the smallest step-length was set to one, and

thus these units have to be seen in relation to the size of the

environment. We used three maze arenas of comparable size (with

bounding boxes of ca. 20620 step units): one circular, one square

with straight walls and one roughly square with irregular walls (see

figure 1). In summary, the simulated agent can sample sensory

events (in our case, position in continuous space) by executing

action primitives from a finite set of action primitives that are

subject to noise.

Macrostate-transition probabilities
We assumed that the agent possessed the means to acquire

knowledge of macrostate-transition probabilities [15]. It could do

so by simply running a random exploratory motor program if

these probabilities required updating as a result of macrostate

modification. Because it is computationally not efficient to re-

simulate this exploration procedure after each iteration of the

optimization algorithm, we made use of a shortcut by introducing

microstates. Please note that this shortcut exists for reasons of

algorithmic efficiency alone and that it can be replaced by any

means to sample macrostate transition probabilities.

Microstates are the atomic elements of a very fine grained,

regular discretization of sensory space. We define the size of a

microstate to be 1=5|
1=5. The transition probabilities in sensory

space were thoroughly sampled once by a simulated agent

executing actions primitives in random sequence. The agent did

not avoid wall contact but reflected off the wall in such a manner

that the reflection angle was equal to the incident angle. This

random exploratory motor program was applied for each

environment and for each set of motor parameters. Even though

the simulated agent moved in continuous space, the changes in

position caused by its actions were recorded in a discretized form

in the microstate transition table which, when normalized to unit

sum, would yield microstate transition probabilities. The exploration

was concluded when the agent had visited 95% of the states at

least 500 times. In the experiments presented here, the agent

executed on average 624 (641) actions on each microstate.

Because macrostates can be seen as disjoint sets of microstates,

transition probabilities at the macrostate level can be computed

from microstate transition probabilities.

The transition probabilities between microstates or macrostates

following an action are stored in the corresponding transition

matrices. The macrostate-transition matrix is referred to as TM,

with each entry TMi,j,k representing the transition probability from

macrostate i to macrostate j using action k. Similarly we define the

transition matrix of the microstates tm. Each entry of this transition

matrix tmi,j,k defines the probability to make a transition from

microstate i to microstate j with action k.

We will now demonstrate how to compute the transition

probabilities from a particular macrostate (source state) i to all other

Figure 1. The shapes of the arenas used in the simulations.
Widths and heights of the bounding boxes are given in step-length
units (see Method section).
doi:10.1371/journal.pone.0010377.g001
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macrostates j for a particular action k. To do so, we interpret the

microstate-transition probabilities for the action under consideration

as a directed, weighted graph. The microstates that are contained

within the source-macrostate i now are ‘‘injected’’ with an ‘‘activity’’,

i.e. probability mass, of unit sum (see equation 1).

actMicrostate
l ~

0 l 6[ Macrostate i

1=N l [ Macrostate i

�
ð1Þ

Here, N denotes the number of microstates in macrostate i. This

initial activity is propagated along the microstate-transition graph

once for each action k, resulting in a new microstate-occupancy

probability distribution (see equation 2).

actMicrostate
m,k ~

X
l

tml,m,k � actMicrostate
l ð2Þ

Here, the probability mass flows from the microstates associated

with the source to all other microstates in a manner proportional

to the probability of reaching the microstates if action k were

executed. For each potential goal macrostate j, the summed

activity of its member microstates corresponds to the transition

probability from the source macrostate to that macrostate (see

equation 3).

TMi,j,k ~ actMacrostate
j,k ~

X
Microstate m
[ Macrostate j

actMicrostate
m,k ð3Þ

After this computation has been performed, actj,k
Macrostate

contains the probability to transit from macrostate i to macrostate

j by performing action k. In order to fill the complete macrostate-

transition matrix, this procedure has to be repeated for each

action and each macrostate.

Optimization
Following the computation of macrostate-transition probabili-

ties, these were evaluated with respect to their predictability and

the degree of their decorrelation. This enabled the optimization

algorithm to modify the macrostate configuration in such a way as

to improve these measures. We define the predictability predi of a

macrostate i as the sparseness of its transition probability

distribution to other macrostates j, averaged across actions k. As

proposed in [16], the sparseness of such a discrete distribution was

measured by its Euclidean norm (see equation 4). Please note that

for each k and i, TMi,j,k is a probability distribution over target

states j and therefore
P

j

TMi,j,k is unity. In contrast, its Euclidean

norm, i.e. predi, lies in the interval [0,1].

predi~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

TMi,j,k
2

s
Actions k

ð4Þ

In order to calculate the degree of decorrelation of a macrostate

i, decorri, one first has to compute the decorrelation value between

the transition probabilities of all macrostates i and j. The

decorrelation of two macrostates was specified to be the inverse

of the not centered correlation coefficient of the corresponding

pair of transition probability distributions, averaged across actions

k (equation 5). Here we used the not centered correlation

coefficient to measure the similarity between transition probabil-

ities. We chose this measure as the uncentered correlation

coefficient between two orthogonal probability distribution vectors

is zero, whereas the normal (mean-free) correlation coefficient

would be negative, which is undesirable given the design of the

objective function (equation 7).

decorrelationi,j ~ 1{

P
l

TMi,l,k �TMj,l,kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l

TMi,l,k
2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l

TMj,l,k
2

r
Actions k

ð5Þ

This results in a square matrix with each entry representing the

average decorrelation of macrostate i and macrostate j. We define

the degree of decorrelation of macrostate i, decorri, to be the

minimum decorrelation of that macrostate with any other

macrostate j (see equation 6).

decorri~ min
i

decorrelationi,j

� �
ð6Þ

A maximally predictable, yet trivial macrostate configuration would

consist of a single state with the probability of remaining in this state

being 1. In order to prevent the algorithm from arriving at this trivial

solution, self-connection strength (sci ~STMi,i,kTActions k) is to be

kept low for all states. To obtain an overall measure of macrostate

quality, we introduced the objective function, Y. The Y value of an

individual macrostate i is a weighted sum of its predictability and

minimum decorrelation (decorri) scaled by the inverse of its self-

connectivity strength. After an optimization run has been concluded,

the macrostate configuration with the highest average Y is chosen to

be that run’s result.

Y~ S b � predi z 1{bð Þ � decorrið Þ � 1{ scið ÞTMacrostates i ð7Þ

Here, b takes values between 0 and 1. For the present study, we

set b to 0.8 (see Result section for details). Y ranges from 0 to 1,

while the maximum of 1 assumes zero self-connectivity. This

maximum is, however, never reached in practice as the presence of

motor noise prevents unit predictability values.

Computing the derivative of the objective function with

respect to changes in the macrostate configuration is not feasible

due to the high dimensionality of configuration space. As a

consequence, the optimization algorithm is not driven by the

gradient of Y, but by a number of rule-based heuristics: If a

macrostate has low predictability, it is split in two. If a pair of

macrostates is highly correlated, they are merged. The two

antagonistic operations, ‘‘Merge’’ and ‘‘cut’’ can be understood

as an iterative local coarsening or refinement of the sensory

space discretization aimed at producing state configurations

with high average Y.

The merge operation combines all microstates of two macro-

state into one macrostate, the cut operation clusters the microstate

population contained in a macrostate into two populations,

yielding two new macrostates.

A successful cut should result in an increase of the predictability

of the current macrostate setup by ensuring that both of the new

macrostates possess sparser transition probabilities than their

predecessor. An effective way to do so is to find a cut that

maximizes similarity of microstate-to-macrostate transition prob-

ability, i.e. projection similarity (equation 8), within clusters and

minimizes this similarity between clusters. The projection

similarity conni,l between a pair of microstates i and l is computed

by correlating the microstate-to-macrostate transition probability

vectors for the two microstates (equation 8).

Sensorimotor Representations
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conni,l ~
X

Action k

X
Macrostate m

X
Microstate j

[ Macrostate m

tmi,j,k � tml,j,k

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA ð8Þ

Based on this similarity measure, we applied the normalized cut

graph-partitioning algorithm [17] to split the microstate popula-

tion into two clusters with maximal within-cluster projection

similarity and minimal across-cluster projection similarity.

In each iteration the optimization algorithm has to decide

whether to cut or to merge as well as which macrostates to subject

to the selected treatment. A number of simple rule-based heuristics

were employed to make these decisions. The first thing following

macrostate evaluation was to compile lists of possible merge-

candidates and cut-candidates. The list of merge-candidates initially

contained all macrostate pairs. During each iteration a macrostate

can only be modified once. Consequently, the list was refined by

resolving intersections between macrostate pairs by removing the

macrostate pair with the higher decorrelation value. Thus, highly

correlated pairs of macrostates had a higher merge priority than

less correlated pairs. Also candidate pairs were discarded that, if

merged, would create a macrostate whose self-connection strength

was its largest transition probability. The cut-candidate list

contained all macrostates characterized by a predictability smaller

than the median of predictability values of the current macrostates

configuration. Once the candidate lists were composed, the

algorithm chose to carry out the merge operation if the mean

decorrelation was lower than the mean predictability. If mean

predictability was lower than mean decorrelation, the cut

operation was executed instead.

In addition to these rules, we introduced an upper boundary for

the possible number of macrostates to prevent the algorithm from

reaching the trivial macrostate configuration where each macro-

state consists of a single microstate. This boundary was

periodically changed every 20 iterations from 1000 macrostates

to 500 macrostates to 10 macrostates to prevent the algorithm

from oscillating. We tested a number of different boundary values

but did not observe any systematic influence on the number of

macrostates in the optimized configurations. Each optimization

run was initialized using a randomized macrostate configuration.

After some thousand iterations (on average 3000 iteration steps),

the optimization process was concluded.

In summary, each iteration of the optimization process consists

of 3 steps. First, the macrostate transition probabilities of the

current configuration of macrostate are calculated by using the

microstate transition probabilities. Second, based on the macro-

state transition probabilities the macrostate configuration is

evaluated according to predictability and decorrelation. Third,

with respect to the decorrelation and predictability values, the

current macrostate configuration is modified.

Analyzing spatial structure of macrostates
In the present case, sensory space is equivalent to the two-

dimensional environment the agent behaves in. Therefore, each

macrostate occupies a distinct spatial region within that environ-

ment. To investigate the spatial structure of these regions, we

applied three measure of region analysis [18]. The area of a

macrostate is defined by the number of microstates in it. Solidity is a

measure of macrostate compactness and computed by dividing the

area of that macrostate by the area of its convex hull. The

eccentricity of a region is defined by the ratio of the distance between

the foci of a fitted ellipse and the length of its major axis. Roundness

is an inverse measure of macrostate eccentricity (roundness = (1 –

eccentricity)). Further, in some of the spatial analysis of the

macrostate, we weighted solidity and roundness by the logarithm

of macrostate area in order to prevent macrostates consisting of

single microstates from receiving high scores (see Result section).

To directly compare the topographical distribution of two

macrostate configurations, we applied a measure of spatial

similarity. First, we constructed a binary spatial-occupancy map

for each macrostate. Then, each occupancy map from the first

macrostate configuration was compared to each map of the second

configuration by computing the not centered correlation coeffi-

cient. To get from this one-to-many comparison to an injective

one-to-one comparison, each macrostate in the smaller configu-

ration was associated with the macrostate in the other configura-

tion which was spatially most correlated to it. Consequently, there

remained a single correlation value for each macrostate in the

smaller configuration. These values were averaged to yield the

final measure of configuration similarity.

Planning & Navigation
We investigated whether the state space representations

generated by our algorithm are useful to an agent interacting

with its environment by testing how well these representations can

serve as a basis for path planning and navigation. As a

comparison, we also assessed the navigability of control-state

configurations. In this section we describe the generation of the

control-state configurations as well as navigation and path

planning.

To create a control-macrostate configuration consisting of a

given number of (N) macrostates, one randomly places N two-

dimensional Gaussians within the environment and applies a

winner-take-all function to arrive at a discrete partitioning of the

environment into N regions. The state configurations thus

generated are qualitatively similar to those produced by our

optimization algorithm (see Result section): they are solid and

approximately convex (see figure 2). The essential difference

between control configurations and optimized configurations is the

precise placement of these convex, compact states.

The goal of the navigation tasks is to reach a region of

connected microstates the same size as the average macrostate of

the optimized state configuration. In a planning stage, the agent

uses its knowledge of macrostate-transition probabilities and a

form of Dijkstra’s algorithm [19] to compute a state-action

function, mapping each macrostate to the action that is most likely

to lead to the goal. To get from its starting position to the goal

region, the agent employs a closed-loop control scheme: After the

execution of every action, it consults its policy to select the best

action for the currently occupied macrostate.

After each action, a macrostate-occupancy probability distribu-

tion is computed along with the probability that the agent has

reached the goal region (goal-occupancy probability). These probabil-

ities are calculated by propagating state-occupancy probability

mass along the graph according to the state-action function. First,

unit activity is injected at the start microstate. Second, the

activation is propagated to the connected microstates and

multiplied by the transition probabilities associated with the action

dictated by the state-action function. This yields an updated state-

occupancy-probability distribution. Propagation is repeated until

the summed activity in the goal region, i.e. the goal-occupancy

probability, reaches a threshold of 0.95. The navigability of a

macrostate configuration was quantified by the number of steps it

took to reach this threshold.

Sensorimotor Representations
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Additionally, we computed the entropy of the macrostate-

occupancy distributions of the agent as it moved towards the goal

region. Here, entropy is a measure of path dispersion or

localizability: low entropy values indicate that the agent follows

a stereotypical and reproducible sequence of states. To compare

an optimized configuration to a control configuration, we

computed the ratio of the corresponding state-occupancy entropy

values averaged across the number of actions needed on average to

reach the criterion was 18. We used only agents with the smallest

step-length motor parameter, such that a reasonable number of

steps would be required to reach a goal.

Results

We applied the optimization algorithm to the sensory spaces of

a number of agents with varying motor parameters, and analyzed

the algorithm’s behavior as well as the representations generated

by it. Optimized macrostate configurations were analyzed with

respect to their topographical properties, tested for their usefulness

as a basis of path planning and navigation, and compared to states

generated by a temporal stability objective.

Analysis of the objective function
Does the optimization algorithm successfully increase the

objective function? To answer this question, we examined how

the objective function Y and its components, decorrelation and

predictability, evolve during the course of optimization. As the

optimization process does not directly optimize Y using gradient-

based techniques, the optimal-macrostate configuration (highest

average Y) does not need to occur at the end of the optimization

process. Usually, Y increased for the first 100 iterations and then

began to change discontinuously. The optimization time-stamps in

figure 3 illustrate this for an exemplary optimization run. Across all

optimization runs, the random initial macrostate configuration at

the beginning of the run had a mean predictability of 0.01

(standard deviation 6 0.005) and mean decorrelation of 0.45

(standard deviation 6 0.14). The value of Y averaged over all

initial conditions was 0.12 (standard deviation 6 0.03). Across all

optimized macrostate configurations, the predictability value was

0.516 (standard deviation 6 0.069), the decorrelation value was

0.48 (standard deviation 6 0.08) and Y was 0.43 (standard

deviation 6 0.06). Note that, given the difference between initial

(random) and optimal-macrostate configuration, the dynamic

range of decorrelation is larger than it appears to be. Because a

random macrostate configuration could be rather decorrelated,

there were iterations during which the decorrelation was lower

than the initial value. Note also that self-connection strength

stayed very small (below 0.05) throughout the optimization

process. It becomes clear that the optimization process successfully

increased the objective function Y as well as its major components,

most notably predictability.

We examined how strongly the results of the optimization

algorithm depend on the relative weighting of predictability and

decorrelation (see equation 1). To this end, we varied the

weighting factor b from 0.01 to 0.99. It should be kept in mind

that b does not affect the optimization process, but only the

assessment of the quality of the optimized state configuration. The

mean decorrelation and predictability values of the optimal-

macrostate configurations over all optimization runs are shown in

figure 4. For most values of b, including the default value used in

the present investigation of b= 0.8, the resulting macrostate

configurations have similarly high predictability values. We found

that for b,0.33 (standard deviation 6 0.08), a qualitative change

of the optimized state configuration took place. Predictability

values dropped sharply while decorrelation increased (see figure 4).

In this domain, the optimization process returned degenerate

Figure 2. Exemplary control macrostate configuration. A control
macrostate configuration generated by randomly placing 50 Gaussian
curves within the environment and applying a winner-take-all
operation. Each color represents a different macrostate. Although the
small differences in the hues in the display might be interpreted
otherwise, all macrostates are simply connected.
doi:10.1371/journal.pone.0010377.g002

Figure 3. The relation between the objective function Y,
predictability and decorrelation for one exemplary optimiza-
tion process. Each point represents the average of these measures for
one iteration step of the optimization run. The two insets show the
spatial layout of the macrostate configurations at selected iterations
where each macrostate identity is coded by a color.
doi:10.1371/journal.pone.0010377.g003

Sensorimotor Representations
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macrostate configurations that were very similar to the random

initial macrostate configuration and all optima were found within

the first 58 iterations. This is due to the disproportionate weighting

of decorrelation over predictability and to the fact that randomly

initialized macrostate configurations possess highly decorrelated

transition probabilities (see figure 3). Thus, macrostate configura-

tions at the beginning of the optimization process receive very high

objective function values. An analysis of the compactness values of

the optimal-macrostate configurations yielded consistently high

compactness values (similar to the values presented in the next

subsection) for b values larger than 0.33, and consistently smaller

values below this threshold. Thus, above a b value of 0.33, the

algorithm produces spatially compact macrostate configurations

with a high degree of predictability.

As a next step, we investigated whether the objective function is

influenced by parametric properties of the behavioral repertoire.

Step-length and step-length noise have a small influence on the

value of the objective function reached (see figures 5A and 5B). A

small interaction of step-length noise and step-length can be

observed at the small steps with high noise with a marginal

decrease of Y. Furthermore, increasing the angular noise slightly

decreased the objective function value at the optimized state

configurations (see figure 5B). All of these noise effects were largely

determined by predictability. Decorrelation was not consistently

affected by noise in the motor parameters. This is quite intuitive,

as the noise level strongly influences movement accuracy,

ultimately limiting the degree of predictability that can be

achieved. However, the effect size was small compared to the

dynamic range of Y (see e.g. figure 3), and thus negligible. We

conclude that the optimization process reliably generates state

configurations with high Y values, and that the optimization

process is robust with respect to the choice of motor parameters.

Analysis of the spatial structure of macrostates
Each macrostate occupies a two-dimensional region of the maze

environment. Here, we analyzed how properties of these regions

Figure 4. Influence of the weighting factor b (equation [1]) on the predictability and decorrelation values of the optimized
macrostate. The black line represents the mean predictability (A) and decorrelation values (B) over all optimization runs for the corresponding b
values. The grey regions represent the area within 6 one standard deviation around the mean values.
doi:10.1371/journal.pone.0010377.g004

Figure 5. The influence of motor parameters on the average Y of optimized macrostate configurations.
doi:10.1371/journal.pone.0010377.g005
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change in the course of optimization. For the initial state

configuration, the average macrostate roundness (1-eccentricity)

and solidity were 0.38 (standard deviation 6 0.02) and 0.012

(standard deviation 6 0.006), respectively. The corresponding

values for optimized macrostate configurations were 0.66

(standard deviation 6 0.08) and 0.89 (standard deviation 6 0.004).

An exemplary optimization run illustrates this trend in figure 6.

Each data point corresponds to a single iteration. Color codes for

the averaged Y value over all macrostates of each macrostate

configuration was associated with that iteration, while position

represents size-weighted roundness and size-weighted solidity.

High values of the objective function are associated with large,

round and compact states. Accordingly solidity and roundness

increased during the optimization process. Note that an increase in

macrostate size is equivalent to a reduction of macrostate number,

as the size of the environment remains constant.

Next, we investigated how macrostate spatial properties depend

on the choice of motor parameters. Figures 7A and 7B show that

the area of macrostates increases in response to an increase in step-

length. In figure 7B, we see that this effect interacts with angular

noise sA: a larger sA leads to larger macrostates. This interaction

effect is to be expected from geometrical considerations. No such

effect can be observed for step-length noise sSL. Neither

roundness nor solidity of optimized macrostates was affected by

the choice of motor parameters. There were no conclusive effects

of maze type on spatial properties.

Further, we directly compared the topographical arrangement

of optimized macrostate configurations for different action

parameters (see Method section). We calculated the correlation

coefficients between macrostate configurations with different

motor parameters, as described in the Method section. Those

coefficients can be arranged in groups of high values with similar

step-lengths and low values with different step-lengths, as shown in

figure 8. A comparable, yet weaker, tendency was observed for

angular noise, such that groups of coefficients with the same

angular noise have higher values than groups with different

angular noise. Step-length noise, on the other hand, was not a

consistent predictor of topographical similarity. Comparing

different types of environment while keeping motor parameters

constant revealed that the macrostate distributions of the square

environment and the irregular square environment were moder-

ately correlated (0.3460.06, mean 6 standard deviation). The

correlation of macrostate topography in the circular environment

was less correlated with the other two (0.1260.02, mean 6

standard deviation, circular vs. irregular; 0.1160.02, mean 6

standard deviation, circular vs. square).

We conclude that optimized macrostate configurations possess

large, spatially compact macrostate distributions. Macrostate size

is inversely related to motor precision: large step-lengths in

combination with large angular noise terms lead to large

macrostates. Furthermore, similar environments lead to similar

spatial distributions of macrostates. We hypothesized that it is this

adaptation of macrostate size and distribution to motor parameters

and environment type that renders the objective function robust

with respect to these issues. This dependence is intuitive, as

coarsening the sensory space discretization maintains predictabil-

ity in the face of increased motor noise.

Usefulness for Planning & Navigation
Are macrostate configurations that are generated by our

predictability-optimization algorithm useful to an agent that is

actively engaging with its environment? We investigated whether

these representations form a suitable basis for path planning and

navigation, and compared their performance to that of control

maps generated by randomly distributing compact macrostates

(see Method section).

Figure 6. The relation between three macrostate properties: the objective function Y, size-weighted solidity and size-weighted
roundness (1-eccentricity). Each point represents the average of these measures for one iteration step in an exemplary optimization run. The four
insets show the spatial layout of the macrostate configurations at selected iterations. Macrostate identity is coded by color.
doi:10.1371/journal.pone.0010377.g006
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For every optimized macrostate configuration, we conducted

100 navigation trials. In each trial, a goal region had to be reached

from a randomly chosen position outside it. Navigation perfor-

mance was evaluated on the optimized map and on a control map

containing the same number of macrostates. Consequently, every

trial yielded a pair of state-occupancy probability distributions that

evolve over time. From these distributions, the probability that the

agent has arrived in the goal region (goal-occupancy probability),

as well as the entropy of the spatial probability distribution of the

agent, was computed.

Navigation performance. To investigate the navigational

performance, we counted the number of actions required to reach the

goal with a probability of at least 0.95. The mean number of steps

required to reach the 0.95 criterion was 16.43 (standard error of

mean 0.09) for optimized maps, and 18.00 (standard error of mean

0.12) for control maps. The difference between the number of steps

in the control and optimized macrostate configuration was 1.6

(standard error of mean 0.13; sign-test significant at 0.05 level). Thus,

compared to the control configuration, optimizing predictability of

the macrostate configuration significantly improved navigational

performance.

To assess the reproducibility of the state-sequence leading to the

goal, we computed the ratio of the state-occupancy entropies of

optimized and control configurations (see Method section). Because

ratios tend to produce outliers, robust statistical measures were used

here. Across all trials, the median of this ratio was 0.93 with an inter-

quartile range of 0.41. Thus the entropy of the optimized state

configuration is higher than in the control case. We conclude that

during navigation, optimized configurations allow for more repro-

ducible state-action sequences than control configurations do.

Relation between navigation performance and the

number of macrostates. Does an increase of the number of

macrostates in the control configuration compared to the optimized

configuration result in better navigational performance? To

investigate this question, we varied the number of macrostates

within the control configuration from 50% to 150% of the number of

macrostates in the optimized configuration. We investigated ten

equally spaced points within this interval. Again, we counted the

number of steps required to reach a goal-occupancy probability of

0.95. The navigational performance changed as a function of the

number of macrostates with a slope of 6.16 per unit (units given by the

ratio of the number of macrostates in the control configuration to the

number in the optimized configuration). The dependence was well

approximated by a linear fit (r = 0.99). Thus, at 50% fewer

macrostates, an average of 5.62 more steps are needed to reach the

goal, while with 50% more macrostates, an average of 0.43 fewer

steps are needed. In summary, increasing the number of macrostates

results in an increase in navigational performance. On average,

control configurations containing less than 117% of the macrostates

in the optimized configuration offer worse navigability than the

optimized configuration. Beyond 139%, performance of the control

configuration may exceed that of optimized configurations. Thus, in

order to increase the navigational performance based on a control

configuration, we have to increase the number of states.

In practice, increasing the number of macrostates comes at a

high cost. As the number of macrostates increases, to approximate

the transition probabilities between macrostates by means of an

exploratory motor program (see Method section) becomes an

increasingly daunting task. Therefore, representational parsimony

is important. Furthermore, when the motor system is inherently

noisy, improving state-space resolution will not improve naviga-

tion performance beyond a certain level. Thus, the choice of the

number of macrostates must be balanced between representational

parsimony and navigability. In contrast, in the optimized

configuration, the number of macrostates is given by the motor

parameters of the agent; it is not a free parameter. Further, the

optimization of predictability yields a higher navigability com-

pared to the control configuration of the same dimensionality.

This suggests that the optimized macrostate configurations are well

balanced between navigability and representational parsimony.

In summary, although these macrostates are optimized with

respect to an agent’s motor capabilities and not to a particular

navigational goal, optimized configurations offer better navigabil-

ity than control configurations. Additionally, in the optimized state

configuration, the agent traverses a more reproducible sequence of

states on its way to the goal. We conclude that optimized state

configurations are well balanced between navigability and

representational parsimony, and thus are suitable for path

planning and navigation.

The importance of knowing the agent’s actions
Here, we investigate whether representations generated with

knowledge of the action repertoire are different from those

generated without it.

Figure 7. The influence of motor parameters on the average macrostate area of the optimized configurations.
doi:10.1371/journal.pone.0010377.g007
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We collapsed the three-dimensional microstate-transition

matrix tm (see Method section) along the action dimension. As

a consequence, the distinction between motor actions was lost,

while knowledge about sensory state transitions remained. These

purely sensory transition probabilities where then used as input to

the optimization algorithm. This is done for all step-lengths and

noise parameters, but only for the circular arena (N = 180). We

then compared these configurations to those generated with

knowledge of motor actions on the basis of their average

predictability, decorrelation, self-connection strength, roundness

and compactness.

Sensory-only transition probabilities contain the pooled transi-

tion probabilities associated with each action. Thus, sensory-only

states are, by virtue of their construction, connected to more states

than states associated with individual actions. Consequently, the

sparseness, i.e. predictability (equation 4), of sensory-only state

configurations is lower. To assure a fair comparison, we evaluated

the optimized sensory-only configurations as if they were based on

the full microstate-transition matrix tm. More precisely, we first

applied the optimization algorithm to the collapsed (sensory-only)

transition matrix. The resulting macrostate configuration map

together with the uncollapsed (differentiating between actions)

microstate transition matrix was then used to compute macrostate

transition probabilities for every action. The objective function

values of these transition probabilities were then computed to

objective function, predictability and decorrelation values of the

state configurations generated with uncollapsed transition proba-

bility matrices. In summary, the optimized sensory-only configu-

rations where generated with a transition matrix collapsed along the

action dimension, but evaluated using the full matrix.

As can be seen in figure 9, state configurations generated from

sensorimotor data achieved higher predictability and decorrelation

Figure 8. Correlation between the optimized macrostate configurations. The correlation matrix showing the topographical similarity
between optimized macrostate configurations with different underlying action parameters. This matrix is based on the circular maze type, but is
similar to those for the other mazes.
doi:10.1371/journal.pone.0010377.g008
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values than configurations generated from purely sensory data.

The average difference of predictability between these two

populations was a highly significant 0.10 (0.08 standard deviation,

Wilcoxon sign-rank test p,0.05). In order to quantify the

difference between the populations, we evaluated the classification

performance of the predictability values between them by

analyzing the area under ROC. For the predictability values,

the area under ROC was 0.75. Furthermore, the average

difference between the decorrelation values was 0.05, and highly

significant (Wilcoxon sign-rank test p,0.05), although a minor

classification performance compared to the predictability values

was obtained (area under ROC = 0.59).

We also found that configurations based on sensorimotor data

were spatially more compact (mean difference 0.3560.11, area

under ROC = 1). In addition, dividing the average macrostate

area of configurations generated with motor information, by the

average macrostate area of sensory-only configurations, revealed

that the latter were consistently larger. This ratio increased as a

function of step-length (step-length 1: 3.06, step-length 2: 3.51,

step-length 3: 4.51, step-length 4: 4.47). Not only is the average

macrostate in a sensory-only configuration larger than the average

sensorimotor macrostate, but its size is also much more variable.

Again, the ratio of the standard deviations of the area distributions

is dependent on the step-length, yet for all step-lengths we

obtained a larger standard deviation in the sensory-only condition

(step-length 1: 53.56, step-length 2: 29.62, step-length 3: 23.61,

step-length 4: 19.87).

We conclude that including knowledge of an agent’s motor

capabilities in the optimization process has an influence on the

resulting representations. These representations possess higher

predictability and decorrelation values than sensory-only repre-

sentations. Their constituent macrostates are smaller and more

compact. Finally, configurations based on sensorimotor data

exhibit much less variability in the average macrostate size,

indicating that the optimization process becomes more reliable

when motor information is present.

Comparison of temporal stability and predictability
Wyss et al. [10] found that place fields form an optimally

temporally stable neural representation of the video stream

recorded by a robot moving in a two-dimensional environment.

Since both [20] and [13] point out the connection between

temporal stability and predictability, we compared the place fields

reported in [10] to our macrostates in terms of their temporal

stability and state-transition predictability.

Before making this comparison, we had to address some

technical differences. To convert continuous place field activity

distributions to a discrete partitioning of space, we applied a

winner-take-all process. The result was of the same formal type as

the macrostate distributions. Hence, once motor parameters had

been selected, Y could be computed. For the opposite transfor-

mation, i.e. to map discrete macrostates to a continuous activity

distribution, we fitted a Gaussian to the largest connected

component of each macrostate, adapted its falloff behavior to

that of the activity distributions reported in [10] and iteratively

refined the distribution locally until a winner-take-all operation

yielded the original discrete macrostate configuration. These two

algorithms allowed an unbiased comparison of continuous place

field activity distributions and discrete partitioning of space.

Once we had mapped a macrostate configuration to a place

field configuration, we could assess its global stability by averaging

the stability objective with respect to each cell’s activity [10]. We

evaluated the temporal stability of place-cell activity as the robot

moved through the environment using a motion generator similar

to that used in [10]. The movement consisted of a random

sequence of translation and rotation combined with obstacle

avoidance. The probability of switching between translation and

rotation was set to 0.1. The stability was calculated by the activity

values of the place cells at the position of the agent within the

environment. Here, stability is a measure between zero and

infinity, where zero would denote perfect stability. The reported

values were normalized such that a random state configuration,

similar to the initial condition of the optimization algorithm

described above, receives unit stability.

For the actual comparison, we chose a place field distribution

reported in [10] and a macrostate configuration of a matching

square maze. The latter was obtained by applying our optimiza-

tion algorithm to the sensory space of an agent whose motor

parameters were extrapolated from figure 7. We computed ten

optimized macrostate configurations using these parameters. The

optimization process yielded configurations consisting of an

average of 23.565.1 (mean 6 standard deviation) macrostates.

This is close to the 25 place fields reported in [10].

Here we compared the predictability and stability values of the

macrostate configurations to the place fields reported in [10]. The

scale of the predictability values ranged from 0 (not predictable) to

1 (highly predictable), while the stability values varied between 0

(perfect stability) and 1 (stability of a randomly distributed

macrostate). The difference between the mean stability values of

the macrostate configurations and the stability values of the place

fields of [10] was very small, 0.013060.0013 (mean 6 standard

deviation), while the stability values of the macrostate configura-

tion were slightly higher. To control for possible biases induced by

the mapping from discrete macrostates to continuous distributions,

we discretized the reported place fields using a winner-take-all

operation, and then turned them into continuous place fields,

using the same algorithm that was used to turn macrostates into

place fields. With this technique, the difference between the mean

stability values of the macrostates configurations, resulting from

optimizing predictability, and the place fields of [10] was

0.012660.0013 (mean 6 standard deviation). Thus the macro-

state configurations were slightly more stable than the one

optimized for stability. The average difference between the

predictability of the macrostate configurations resulting from

optimizing predictability and the place fields of [10] was

0.368060.003 (mean 6 standard deviation). The macrostate

configurations had higher predictability values compared to those

Figure 9. Comparison of the predictability and decorrelation of
state configurations generated with and without the knowl-
edge of the agent’s motor capabilities. The horizontal lines in each
box represent the 25th, 50th (median) and 75th percentiles, while the
black whisker bars mark the range of the data.
doi:10.1371/journal.pone.0010377.g009
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of [10]. In comparison, the difference in predictability values

between the place fields of [10] and a random distribution of

macrostates was 0.17260.001 (mean 6 standard deviation), with

higher predictability values for the place fields of [10]. Thus both

optimization processes result in an increase in predictability and

stability values compared to a random distribution, while

optimizing with respect to predictability also leads to an increase

in temporal stability, whereas the inverse is not the case.

Discussion

The proposed optimization algorithm reliably generates sensory

space representations with predictable and decorrelated state-

transition probabilities. The macrostates that constitute these

representations are spatially compact and comparable to place

fields. The algorithm is robust with respect to a variety of

parameters of the agent’s motor apparatus and of the objective

function. Yet, the size and topographical distribution of macro-

states is adapted to the agent’s motor capabilities as well as to its

environment. We showed that representations optimized for

predictability can be used as a basis for path planning and

navigation, and offer greater navigability and representational

parsimony than control configurations of compact, solid macro-

states. We found that it is important to incorporate knowledge

about the agent’s motor capabilities into the optimization process.

The absence of such motor information leads to state configura-

tions of lower average predictability and decorrelation, whose

constituent macrostates are larger, less compact and more

variable. In addition, the variability of the average macrostate

size is increased when motor information is not present. By

comparing macrostates to the temporally stable place fields

reported in [10], we found that states optimized with respect to

predictability are also temporally stable.

A number of issues concerning the optimization process have

to be addressed. First, the algorithm is guided by rule-based

heuristics informed by predictability and decorrelation; it does

not truly maximize the Y value. It may not converge to a stable

fixed point, but maintain oscillations of finite size. Indeed,

increasing the number of iterations beyond a certain limit did

not yield higher Y values. Furthermore, up to now, we did not

compute the upper boundary of possible Y values for a certain

set of motor parameters and a certain environment. Approxi-

mating this boundary would provide a useful termination

criterion. Even without termination criteria, different optimiza-

tion runs result in similar optimized macrostate configurations

for the same motor parameters, and thus represent a

reproducible final-state configuration. Second, the algorithm

assumes that the transition probabilities between macrostates

are known for each action. Here, the simulated agent learned

these probabilities by executing an exhaustive exploratory

motor program. It is not yet clear how the optimization

algorithm might perform if the transition probabilities were only

poorly explored or whether it is applicable in an online learning

scenario. The third issue is the assumed generality of our

algorithm. Even though the sensory space of our simulated

agent appears to be simplistic, a mapping between this sensory

space and that used in [10] can be achieved by taking an

appropriate set of unique camera views and mapping them to

the corresponding spatial positions (see e.g. [21]). As the

algorithm only takes into account the transition probabilities

between sensory states, it does not matter from which sensory

organ these states originate. Hence we consider the indepen-

dence of a specific topological embedding to be the most

outstanding and important feature of the presented algorithm.

State-aggregation techniques used in reinforcement learning are

similar to our idea of creating a state-space representation that

enables an agent to effectively interact with its environment.

During reinforcement learning, an agent learns from reinforce-

ment signals that pertain to the consequences of its interaction

with the environment. The goal of this learning is to derive a

control policy for the agents’ state-space, which allows it to

maximize expected reward, as in the solution of the Bellman

equation [22]. Clearly, choosing a suitable state-space represen-

tation is just as important as choosing the learning algorithm

operating on it. A number of state-aggregation techniques attempt

to solve the former problem by formulating the search for a

suitable state space as an optimization problem. In a theoretical

study, Singh and colleagues [23] suggest that the best state-space

representation is the one for which the solution to the Bellman

equation can best be approximated. In practice, this theoretically

sound idea is often re-framed to simply state that an optimal state

space should increase the expected reward [24,25,26]. Reynolds

[27] proposed a state-space representation based on clustering, i.e.

merging, of states according to the action-value function resulting

from, e.g. Q-Learning. Chrisman [28] developed a state-

aggregation technique quite similar to our own approach. He

argues that transitions between states resulting from an action

should be as predictable as possible. If the transition dynamics are

unpredictable for a particular state, this state should be split in a

manner as to render each of the new states more predictable. This

is basically the description of the ‘‘cut’’ procedure in our

algorithm. Chrisman, however, does not introduce a merge

operation, and this reduces the number of possible state

configurations compared to our algorithm, which modifies the

states by a cut-and-merge procedure. In contrast to these state-

aggregation techniques, our algorithm organizes the sensory space

with respect to the agent’s motor capability in a completely

unsupervised fashion, independent of a certain task or reward

structure.

Recent modeling studies suggest that place cells can be regarded

as temporally stable representations of the video stream recorded

by a behaving agent [9,10]. In these studies, the behavior of the

agent only indirectly influences place field formation, as it

influences which sensory inputs are sampled from the environ-

ment. In contrast, our algorithm directly involves motor action in

the creation of sensory representations. We found that properties

of the motor apparatus are a key determinant of the size and

number of states generated by our algorithm. In contrast, the

number of place fields reported in [10] is predetermined by the

number of output neurons. Thus, the number of place field–like

representations produced by our algorithm emerges from the

statistical structure of sensorimotor space and is not a free

parameter. There is evidence for the biological reality of

integration of motor signals and sensory input in the formation

of place fields. Terrazas and colleagues [29] investigated the

influence of self-motion information on the formation of place

fields in behaving rats. They investigated the difference between

place fields formed by rats that were able to actively explore their

environment and place fields formed by rats that were passively

transported through the same environment. Even though visual

and vestibular input were similar in both conditions, the place

fields formed by actively moving animals contain more informa-

tion about that animal’s position within the environment than

place fields formed on the basis of passively received sensory input.

This shows that motor signals are involved in the formation of

sensory representations found in biology.

Earlier studies proposed an involvement of motor signals in

place field formation via path-integration processes. Path-integra-
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tion refers to the continuous integration of self-motion cues into

the representation of one’s orientation and position with respect to

a certain starting point. Both sensory input and motor output are

transformed into such self-motion cues before being processed by

the integration mechanism. In combination with landmark-based

mechanisms, path-integration has been proposed as a basis for

place field formation [14]. In contrast, we maintain that motor

signals directly, i.e. without being converted to self-motion cues,

influence the formation of sensory representations (such as place

fields) to increase the predictability of the sensory outcome

associated with a particular motor action.

In this study we find that there is a relationship between the

amount of noise present in action execution and the coarseness of

the sensory representation: more noise leads to larger states (see,

e.g. figure 7). From this finding, we can make the prediction that a

similar relation might hold between the precision of the motor

system of an animal and the spatial extend of its place-fields. Using

a virtual reality apparatus for rats [30], it is possible to manipulate

the degree of noise in the mapping from motor action to sensory

input. As it is also possible to record place-cell activity from a rat

immersed in the virtual environment, our prediction can be tested

quite easily given the right equipment. An analogous prediction

could be made for the influence of step-length, i.e. movement

speed, on the average size of place-fields.

The presented algorithm is a first approach to utilize

predictability as a generic coding principle. As predicted in [13]

and [20], we found that optimizing for predictability leads to

representations that are temporally stable as well. This suggests

that predictability is a more powerful coding principle than

temporal stability. Consequently, unsupervised learning algo-

rithms maximizing predictability of sensorimotor state transitions

are promising candidates for general models of neural coding.
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